首页> 外文OA文献 >AABC: approximate approximate Bayesian computation when simulating a large number of data sets is computationally infeasible
【2h】

AABC: approximate approximate Bayesian computation when simulating a large number of data sets is computationally infeasible

机译:aaBC:模拟a时的近似贝叶斯计算   大量数据集在计算上是不可行的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approximate Bayesian computation (ABC) methods perform inference onmodel-specific parameters of mechanistically motivated parametric statisticalmodels when evaluating likelihoods is difficult. Central to the success of ABCmethods is computationally inexpensive simulation of data sets from theparametric model of interest. However, when simulating data sets from a modelis so computationally expensive that the posterior distribution of parameterscannot be adequately sampled by ABC, inference is not straightforward. Wepresent approximate approximate Bayesian computation" (AABC), a class ofmethods that extends simulation-based inference by ABC to models in whichsimulating data is expensive. In AABC, we first simulate a limited number ofdata sets that is computationally feasible to simulate from the parametricmodel. We use these data sets as fixed background information to inform anon-mechanistic statistical model that approximates the correct parametricmodel and enables efficient simulation of a large number of data sets byBayesian resampling methods. We show that under mild assumptions, the posteriordistribution obtained by AABC converges to the posterior distribution obtainedby ABC, as the number of data sets simulated from the parametric model and thesample size of the observed data set increase simultaneously. We illustrate theperformance of AABC on a population-genetic model of natural selection, as wellas on a model of the admixture history of hybrid populations.
机译:当难以评估似然性时,近似贝叶斯计算(ABC)方法可对机械动力参数统计模型的模型特定参数进行推断。 ABC方法成功的关键是根据感兴趣的参数模型对数据集进行计算廉价的仿真。但是,当从模型模拟数据集在计算上非常昂贵,以至于ABC无法充分采样参数的后验分布时,推论就不那么容易了。我们提出了近似贝叶斯计算”(AABC),这是一类方法,它将基于ABC的基于模拟的推理扩展到其中模拟数据昂贵的模型。在AABC中,我们首先模拟了有限的数据集,这些数据集在计算上可以从参数模型进行模拟。我们将这些数据集用作固定的背景信息,以告知非机械统计模型,该模型可以近似正确的参数模型,并能够通过贝叶斯重采样方法对大量数据集进行有效的模拟,结果表明,在温和的假设下,AABC获得的后验分布收敛到ABC获得的后验分布,随着从参数模型模拟的数据集数量和观察到的数据集样本量的同时增加,我们说明了AABC在自然选择种群-遗传模型以及ABC模型上的性能混合种群的混合史。

著录项

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号